Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.845
Filtrar
1.
BMC Genom Data ; 25(1): 37, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637749

RESUMO

BACKGROUND: Sweet yellow clover (Melilotus officinalis) is a diploid plant (2n = 16) that is native to Europe. It is an excellent legume forage. It can both fix nitrogen and serve as a medicine. A genome assembly of Melilotus officinalis that was collected from Best corporation in Beijing is available based on Nanopore sequencing. The genome of Melilotus officinalis was sequenced, assembled, and annotated. RESULTS: The latest PacBio third generation HiFi assembly and sequencing strategies were used to produce a Melilotus officinalis genome assembly size of 1,066 Mbp, contig N50 = 5 Mbp, scaffold N50 = 130 Mbp, and complete benchmarking universal single-copy orthologs (BUSCOs) = 96.4%. This annotation produced 47,873 high-confidence gene models, which will substantially aid in our research on molecular breeding. A collinear analysis showed that Melilotus officinalis and Medicago truncatula shared conserved synteny. The expansion and contraction of gene families showed that Melilotus officinalis expanded by 565 gene families and shrank by 56 gene families. The contacted gene families were associated with response to stimulus, nucleotide binding, and small molecule binding. Thus, it is related to a family of genes associated with peptidase activity, which could lead to better stress tolerance in plants. CONCLUSIONS: In this study, the latest PacBio technology was used to assemble and sequence the genome of the Melilotus officinalis and annotate its protein-coding genes. These results will expand the genomic resources available for Melilotus officinalis and should assist in subsequent research on sweet yellow clover plants.


Assuntos
Medicago truncatula , Melilotus , Genômica/métodos , Tamanho do Genoma , Sintenia
2.
Nat Commun ; 15(1): 2988, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582884

RESUMO

Class I KNOTTED-like homeobox (KNOXI) genes are parts of the regulatory network that control the evolutionary diversification of leaf morphology. Their specific spatiotemporal expression patterns in developing leaves correlate with the degrees of leaf complexity between simple-leafed and compound-leafed species. However, KNOXI genes are not involved in compound leaf formation in several legume species. Here, we identify a pathway for dual repression of MtKNOXI function in Medicago truncatula. PINNATE-LIKE PENTAFOLIATA1 (PINNA1) represses the expression of MtKNOXI, while PINNA1 interacts with MtKNOXI and sequesters it to the cytoplasm. Further investigations reveal that UNUSUAL FLORAL ORGANS (MtUFO) is the direct target of MtKNOXI, and mediates the transition from trifoliate to pinnate-like pentafoliate leaves. These data suggest a new layer of regulation for morphological diversity in compound-leafed species, in which the conserved regulators of floral development, MtUFO, and leaf development, MtKNOXI, are involved in variation of pinnate-like compound leaves in M. truncatula.


Assuntos
Medicago truncatula , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Arch Microbiol ; 206(4): 147, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462552

RESUMO

Legumes can establish a mutual association with soil-derived nitrogen-fixing bacteria called 'rhizobia' forming lateral root organs called root nodules. Rhizobia inside the root nodules get transformed into 'bacteroids' that can fix atmospheric nitrogen to ammonia for host plants in return for nutrients and shelter. A substantial 200 million tons of nitrogen is fixed annually through biological nitrogen fixation. Consequently, the symbiotic mechanism of nitrogen fixation is utilized worldwide for sustainable agriculture and plays a crucial role in the Earth's ecosystem. The development of effective nitrogen-fixing symbiosis between legumes and rhizobia is very specialized and requires coordinated signaling. A plethora of plant-derived nodule-specific cysteine-rich (NCR or NCR-like) peptides get actively involved in this complex and tightly regulated signaling process of symbiosis between some legumes of the IRLC (Inverted Repeat-Lacking Clade) and Dalbergioid clades and nitrogen-fixing rhizobia. Recent progress has been made in identifying two such peptidases that actively prevent bacterial differentiation, leading to symbiotic incompatibility. In this review, we outlined the functions of NCRs and two nitrogen-fixing blocking peptidases: HrrP (host range restriction peptidase) and SapA (symbiosis-associated peptidase A). SapA was identified through an overexpression screen from the Sinorhizobium meliloti 1021 core genome, whereas HrrP is inherited extra-chromosomally. Interestingly, both peptidases affect the symbiotic outcome by degrading the NCR peptides generated from the host plants. These NCR-degrading peptidases can shed light on symbiotic incompatibility, helping to elucidate the reasons behind the inefficiency of nitrogen fixation observed in certain groups of rhizobia with specific legumes.


Assuntos
Medicago truncatula , Rhizobium , Peptídeo Hidrolases/genética , Rhizobium/genética , Rhizobium/metabolismo , Simbiose , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Ecossistema , Peptídeos/metabolismo , Verduras , Nitrogênio , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia
4.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474164

RESUMO

The interaction of plants and soil bacteria rhizobia leads to the formation of root nodule symbiosis. The intracellular form of rhizobia, the symbiosomes, are able to perform the nitrogen fixation by converting atmospheric dinitrogen into ammonia, which is available for plants. The symbiosis involves the resource sharing between two partners, but this exchange does not include equivalence, which can lead to resource scarcity and stress responses of one of the partners. In this review, we analyze the possible involvement of the autophagy pathway in the process of the maintenance of the nitrogen-fixing bacteria intracellular colony and the changes in the endomembrane system of the host cell. According to in silico expression analysis, ATG genes of all groups were expressed in the root nodule, and the expression was developmental zone dependent. The analysis of expression of genes involved in the response to carbon or nitrogen deficiency has shown a suboptimal access to sugars and nitrogen in the nodule tissue. The upregulation of several ER stress genes was also detected. Hence, the root nodule cells are under heavy bacterial infection, carbon deprivation, and insufficient nitrogen supply, making nodule cells prone to autophagy. We speculate that the membrane formation around the intracellular rhizobia may be quite similar to the phagophore formation, and the induction of autophagy and ER stress are essential to the success of this process.


Assuntos
Medicago truncatula , Rhizobium , Simbiose/fisiologia , Medicago truncatula/genética , Proteínas de Plantas/genética , Fixação de Nitrogênio/genética , Rhizobium/metabolismo , Autofagia , Nitrogênio/metabolismo , Carbono/metabolismo , Nódulos Radiculares de Plantas/metabolismo
5.
Commun Biol ; 7(1): 289, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459083

RESUMO

Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA in Medicago truncatula identified from salt-treated Medicago truncatula is important for salinity tolerance. We name the lncRNA LAL, LncRNA ANTISENSE to M. truncatula LIGHT-HARVESTING CHLOROPHYLL A/B BINDING (MtLHCB) genes. LAL is an antisense to four consecutive MtLHCB genes on chromosome 6. In salt-treated M. truncatula, LAL is suppressed in an early stage but induced later; this pattern is opposite to that of the four MtLHCBs. The lal mutants show enhanced salinity tolerance, while overexpressing LAL disrupts this superior tolerance in the lal background, which indicates its regulatory role in salinity response. The regulatory role of LAL on MtLHCB1.4 is further verified by transient co-expression of LAL and MtLHCB1.4-GFP in tobacco leaves, in which the cleavage of MtLHCB1.4 and production of secondary interfering RNA is identified. This work demonstrates a lncRNA, LAL, functioning as a regulator that fine-tunes salinity tolerance via regulating MtLHCB1s' expression in M. truncatula.


Assuntos
Medicago truncatula , RNA Longo não Codificante , Tolerância ao Sal/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Estresse Fisiológico/genética , Clorofila A/metabolismo
6.
Plant Physiol Biochem ; 209: 108542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531119

RESUMO

High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.


Assuntos
Arabidopsis , Medicago truncatula , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Tolerância ao Sal , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Germinação/genética
7.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365913

RESUMO

The soil bacterium Sinorhizobium meliloti can establish a nitrogen-fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Although toxin-antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a mapping by overexpression of an RNase in Escherichia coli (MORE) RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Humanos , Sinorhizobium meliloti/genética , RNA de Transferência de Serina , Medicago truncatula/genética , Medicago truncatula/microbiologia , Bactérias , Fixação de Nitrogênio/fisiologia , Estilo de Vida , Nitrogênio , Ribonucleases , Simbiose/fisiologia
8.
Curr Biol ; 34(4): 825-840.e7, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38301650

RESUMO

Legumes produce specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting nitrogen-fixing bacteria. We have previously shown that a lateral root program underpins nodule initiation, but there must be additional developmental regulators that confer nodule identity. Here, we show two members of the LIGHT-SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, predominantly known to define shoot meristem complexity and organ boundaries, function as regulators of nodule organ identity. In parallel to the root initiation program, LSH1/LSH2 recruit a program into the root cortex that mediates the divergence into nodules, in particular with cell divisions in the mid-cortex. This includes regulation of auxin and cytokinin, promotion of NODULE ROOT1/2 and Nuclear Factor YA1, and suppression of the lateral root program. A principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a key feature unique to nodules.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Hipocótilo/genética , Hipocótilo/metabolismo , Citocininas/genética , Meristema/metabolismo , Simbiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
9.
Cell Rep ; 43(2): 113747, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329875

RESUMO

Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences. The analysis identifies epidermal root hair and stele sub-cell types associated with a symbiotic response to infection and regulation of nodule proliferation. Trajectory inference shows cortex-derived cell lineages differentiating to form the nodule primordia and, posteriorly, its meristem, while modulating the regulation of phytohormone-related genes. Gene regulatory analysis of the cell transcriptomes identifies new regulators of nodulation, including STYLISH 4, for which the function is validated.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Transcriptoma/genética , Raízes de Plantas/genética , Linhagem da Célula/genética , Reguladores de Crescimento de Plantas
10.
BMC Genomics ; 25(1): 195, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373903

RESUMO

BACKGROUND: Lipoxygenase (LOX) is a multifunctional enzyme that is primarily related to plant organ growth and development, biotic and abiotic stress responses, and production of flavor-associated metabolites. In higher plants, the LOX family encompasses several isozymes with varying expression patterns between tissues and developmental stages. These affect processes including seed germination, seed storage, seedling growth, fruit ripening, and leaf senescence. LOX family genes have multiple functions in response to hormones such as methyl jasmonate (MeJA) and salicylic acid. RESULTS: In this study, we identified 30 and 95 LOX homologs in Medicago truncatula and Medicago sativa, respectively. These genes were characterized with analyses of their basic physical and chemical properties, structures, chromosomal distributions, and phylogenetic relationships to understand structural variations and their physical locations. Phylogenetic analysis was conducted for members of the three LOX subfamilies (9-LOX, type I 13-LOX, and type II 13-LOX) in Arabidopsis thaliana, Glycine max, M. truncatula, and M. sativa. Analysis of predicted promoter elements revealed several relevant cis-acting elements in MtLOX and MsLOX genes, including abscisic acid (ABA) response elements (ABREs), MeJA response elements (CGTCA-motifs), and antioxidant response elements (AREs). Cis-element data combined with transcriptomic data demonstrated that LOX gene family members in these species were most likely related to abiotic stress responses, hormone responses, and plant development. Gene expression patterns were confirmed via quantitative reverse transcription PCR. Several MtLOX genes (namely MtLOX15, MtLOX16, MtLOX20, and MtLOX24) belonging to the type I 13-LOX subfamily and other LOX genes (MtLOX7, MtLOX11, MsLOX23, MsLOX87, MsLOX90, and MsLOX94) showed significantly different expression levels in the flower tissue, suggesting roles in reproductive growth. Type I 13-LOXs (MtLOX16, MtLOX20, MtLOX21, MtLOX24, MsLOX57, MsLOX84, MsLOX85, and MsLOX94) and type II 13-LOXs (MtLOX5, MtLOX6, MtLOX9, MtLOX10, MsLOX18, MsLOX23, and MsLOX30) were MeJA-inducible and were predicted to function in the jasmonic acid signaling pathway. Furthermore, exogenous MtLOX24 expression in Arabidopsis verified that MtLOX24 was involved in MeJA responses, which may be related to insect-induced abiotic stress. CONCLUSIONS: We identified six and four LOX genes specifically expressed in the flowers of M. truncatula and M. sativa, respectively. Eight and seven LOX genes were induced by MeJA in M. truncatula and M. sativa, and the LOX genes identified were mainly distributed in the type I and type II 13-LOX subfamilies. MtLOX24 was up-regulated at 8 h after MeJA induction, and exogenous expression in Arabidopsis demonstrated that MtLOX24 promoted resistance to MeJA-induced stress. This study provides valuable new information regarding the evolutionary history and functions of LOX genes in the genus Medicago.


Assuntos
Acetatos , Arabidopsis , Ciclopentanos , Medicago truncatula , Oxilipinas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago sativa/genética , Estudo de Associação Genômica Ampla , Filogenia , Arabidopsis/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
11.
Physiol Plant ; 176(1): e14212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353133

RESUMO

Plant-specific WUSCHEL-related homeobox (WOX) family transcription factors play critical roles in maintaining meristems and lateral organ development. The WUS clade member STF/LAM1 physically interacts with the intermediate clade member WOX9. This interaction contributes to their antagonistical functions on leaf blade outgrowth by competing for the same cis-elements in the promoter of their common target in M. truncatula and N. sylvestris. Here, we identified the main interaction domains of STF and MtWOX9 in Medicago, shedding light on the mechanism of WOX gene function. The middle domain of STF and MtWOX9 are both critical for the interaction, while the conserved motif of STF in the C-terminal domain is also required. Deletion of the middle domain of STF partially rescued the leaf blade phenotypes of the stf null mutant, indicating that the middle domain plays an essential role during leaf blade expansion. This finding provides a new insight that the versatility of WOX function is not only caused by the conserved DNA binding and repression domains but also by the middle domain that recruits different partners.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética
12.
BMC Genomics ; 25(1): 204, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395768

RESUMO

Medicago truncatula, model legume and alfalfa relative, has served as an essential resource for advancing our understanding of legume physiology, functional genetics, and crop improvement traits. Necrotrophic fungus, Ascochyta medicaginicola, the causal agent of spring black stem (SBS) and leaf spot is a devasting foliar disease of alfalfa affecting stand survival, yield, and forage quality. Host resistance to SBS disease is poorly understood, and control methods rely on cultural practices. Resistance has been observed in M. truncatula accession SA27063 (HM078) with two recessively inherited quantitative-trait loci (QTL), rnpm1 and rnpm2, previously reported. To shed light on host resistance, we carried out a de novo genome assembly of HM078. The genome, referred to as MtHM078 v1.0, is comprised of 23 contigs totaling 481.19 Mbp. Notably, this assembly contains a substantial amount of novel centromere-related repeat sequences due to deep long-read sequencing. Genome annotation resulted in 98.4% of BUSCO fabales proteins being complete. The assembly enabled sequence-level analysis of rnpm1 and rnpm2 for gene content, synteny, and structural variation between SBS-resistant accession SA27063 (HM078) and SBS-susceptible accession A17 (HM101). Fourteen candidate genes were identified, and some have been implicated in resistance to necrotrophic fungi. Especially interesting candidates include loss-of-function events in HM078 because they fit the inverse gene-for-gene model, where resistance is recessively inherited. In rnpm1, these include a loss-of-function in a disease resistance gene due to a premature stop codon, and a 10.85 kbp retrotransposon-like insertion disrupting a ubiquitin conjugating E2. In rnpm2, we identified a frameshift mutation causing a loss-of-function in a glycosidase, as well as a missense and frameshift mutation altering an F-box family protein. This study generated a high-quality genome of HM078 and has identified promising candidates, that once validated, could be further studied in alfalfa to enhance disease resistance.


Assuntos
Resistência à Doença , Medicago truncatula , Resistência à Doença/genética , Medicago truncatula/genética , Locos de Características Quantitativas , Proteínas/genética , Fenótipo , Medicago sativa/genética
13.
Adv Sci (Weinh) ; 11(12): e2306389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225717

RESUMO

Vanadium (V) pollution potentially threatens human health. Here, it is found that nsp1 and nsp2, Rhizobium symbiosis defective mutants of Medicago truncatula, are sensitive to V. Concentrations of phosphorus (P), iron (Fe), and sulfur (S) with V are negatively correlated in the shoots of wild-type R108, but not in mutant nsp1 and nsp2 shoots. Mutations in the P transporter PHT1, PHO1, and VPT families, Fe transporter IRT1, and S transporter SULTR1/3/4 family confer varying degrees of V tolerance on plants. Among these gene families, MtPT1, MtZIP6, MtZIP9, and MtSULTR1; 1 in R108 roots are significantly inhibited by V stress, while MtPHO1; 2, MtVPT2, and MtVPT3 are significantly induced. Overexpression of Arabidopsis thaliana VPT1 or M. truncatula MtVPT3 increases plant V tolerance. However, the response of these genes to V is weakened in nsp1 or nsp2 and influenced by soil microorganisms. Mutations in NSPs reduce rhizobacterial diversity under V stress and simplify the V-responsive operational taxonomic unit modules in co-occurrence networks. Furthermore, R108 recruits more beneficial rhizobacteria related to V, P, Fe, and S than does nsp1 or nsp2. Thus, NSPs can modulate the accumulation and tolerance of legumes to V through P, Fe, and S transporters, ion homeostasis, and rhizobacterial community responses.


Assuntos
Medicago truncatula , Vanádio , Humanos , Vanádio/metabolismo , Mutação , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Transdução de Sinais
14.
Science ; 383(6681): 443-448, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271524

RESUMO

The mutualistic association between plants and arbuscular mycorrhizal (AM) fungi requires intracellular accommodation of the fungal symbiont and maintenance by means of lipid provisioning. Symbiosis signaling through lysin motif (LysM) receptor-like kinases and a leucine-rich repeat receptor-like kinase DOES NOT MAKE INFECTIONS 2 (DMI2) activates transcriptional programs that underlie fungal passage through the epidermis and accommodation in cortical cells. We show that two Medicago truncatula cortical cell-specific, membrane-bound proteins of a CYCLIN-DEPENDENT KINASE-LIKE (CKL) family associate with, and are phosphorylation substrates of, DMI2 and a subset of the LysM receptor kinases. CKL1 and CKL2 are required for AM symbiosis and control expression of transcription factors that regulate part of the lipid provisioning program. Onset of lipid provisioning is coupled with arbuscule branching and with the REDUCED ARBUSCULAR MYCORRHIZA 1 (RAM1) regulon for complete endosymbiont accommodation.


Assuntos
Quinases Ciclina-Dependentes , Metabolismo dos Lipídeos , Medicago truncatula , Proteínas de Membrana , Micorrizas , Proteínas de Plantas , Simbiose , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Proteínas de Membrana/metabolismo , Micorrizas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Metabolismo dos Lipídeos/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo
15.
Microbiol Spectr ; 12(2): e0182723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38236024

RESUMO

One of the major issues in healthcare today is antibiotic resistance. Antimicrobial peptides (AMPs), a subclass of host defense peptides, have been suggested as a viable solution for the multidrug resistance problem. Legume plants express more than 700 nodule-specific cysteine-rich (NCR) peptides. Three NCR peptides (NCR094, NCR888, and NCR992) were predicted to have antimicrobial activity using in silico AMP prediction programs. This study focused on investigating the roles of the NCRs in antimicrobial activity and antibiofilm activity, followed by in vitro toxicity profiling. Different variants were synthesized, i.e., mutated and truncated derivatives. The effect on the growth of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) was monitored post-treatment, and survived cells were counted using an in vitro and ex vivo killing assay. The antibiofilm assay was conducted using subinhibitory concentrations of the NCRs and monitoring K. pneumoniae biomass, followed by crystal violet staining. The cytotoxicity profile was evaluated using erythrocyte hemolysis and leukemia (K562) cell line toxicity assays. Out of the NCRs, NCR094 and NCR992 displayed mainly in vitro and ex vivo bactericidal activity on K. pneumoniae. NCR094 wild type (WT) and NCR992 eradicated K. pneumoniae at different potency; NCR094 and NCR992 killed K. pneumoniae completely at 25 and 50 µM, respectively. However, both peptides in the wild type showed negligible bactericidal effect on MRSA in vitro and ex vivo. NCR094 and its derivatives relatively retained the antimicrobial activity on K. pneumoniae in vitro and ex vivo. NCR992 WT lost its antimicrobial activity on K. pneumoniae ex vivo, yet the different truncated and mutated variants retained some of the antimicrobial role ex vivo. All the different variants of NCR094 had no effect on MRSA in vitro and ex vivo. Similarly, NCR992's variants had a negligible bactericidal role on MRSA in vitro, yet the truncated variants had a significantly high bactericidal effect on MRSA ex vivo. NCR094.3 (cystine replacement variant) and NCR992.1 displayed significant antibiofilm activity more than 90%. NCR992.3 and NCR992.2 displayed more than 50% of antibiofilm activity. All the NCR094 forms had no toxicity, except NCR094.1 (49.38%, SD ± 3.46) and all NCR992 forms (63%-93%), which were above the cutoff (20%). Only NCR992.2 showed low toxicity on K562 (24.8%, SD ± 3.40), yet above the 20% cutoff. This study provided preliminary antimicrobial and safety data for the potential use of these peptides for therapeutical applications.IMPORTANCEThe discovery of new antibiotics is urgently needed, given the global expansion of antibiotic-resistant bacteria and the rising mortality rate. One of the initial lines of defense against microbial infections is antimicrobial peptides (AMPs). Plants can express hundreds of such AMPs as defensins and defensin-like peptides. The nodule-specific cysteine-rich (NCR) peptides are a class of defensin-like peptides that have evolved in rhizobial-legume symbioses. This study screened the antimicrobial activity of a subset of NCR sequences using online computational AMP prediction algorithms. Two novel NCRs, NCR094 and NCR992, with different variants were identified to exhibit antimicrobial activity with various potency on two problematic pathogens, K. pneumoniae and MRSA, using in vitro and ex vivo killing assays. Yet, one variant, NCR094.3, had no toxicity toward human cells and displayed antibiofilm activity, which make it a promising lead for antimicrobial drug development.


Assuntos
Anti-Infecciosos , Medicago truncatula , Staphylococcus aureus Resistente à Meticilina , Humanos , Medicago truncatula/química , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Peptídeos Antimicrobianos , Cisteína/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Klebsiella pneumoniae , Verduras , Defensinas/farmacologia , Testes de Sensibilidade Microbiana
16.
New Phytol ; 241(2): 793-810, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37915139

RESUMO

Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.


Assuntos
Medicago truncatula , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Cobre/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Physiol Biochem ; 206: 108213, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043253

RESUMO

Nitrogen is the most limiting nutrient for plants, and it is preferentially absorbed in the form of nitrate by roots, which adapt to nitrate fluctuations by remodelling their architecture. Although core mechanisms of the response to nitrate availability are relatively well-known, signalling events controlling root growth and architecture have not all been identified, in particular in Legumes. However, the developmental effect of nitrate in Legumes is critical since external nitrate not only regulates root architecture but also N2-fixing nodule development. We have previously shown that in barrel medic (Medicago truncatula), the nitrate transporter MtNPF6.8 is required for nitrate sensitivity in root tip. However, uncertainty remains as to whether nitrogen metabolism itself is involved in the MtNPF6.8-mediated response. Here, we examine the metabolic effects of MtNPF6.8-dependent nitrate signalling using metabolomics and proteomics in WT and mtnpf6.8 root tips in presence or absence of nitrate. We found a reorchestration of metabolism due to the mutation, in favour of the branched chain amino acids/pantothenate metabolic pathway, and lipid catabolism via glyoxylate. That is, the mtnpf6.8 mutation was likely associated with a specific rerouting of acetyl-CoA production (glyoxylic cycle) and utilisation (pantothenate and branched chain amino acid synthesis). In agreement with our previous findings, class III peroxidases were confirmed as the main protein class responsive to nitrate, although in an MtNPF6.8-independent fashion. Our data rather suggest the involvement of other pathways within mtnpf6.8 root tips, such as Ca2+ signalling or cell wall methylation.


Assuntos
Medicago truncatula , Transportadores de Nitrato , Meristema/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Simbiose
19.
New Phytol ; 241(1): 24-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924218

RESUMO

C-terminally encoded peptides (CEP) signaling peptides are drivers of systemic pathways regulating nitrogen (N) acquisition in different plants, from Arabidopsis to legumes, depending on mineral N availability (e.g. nitrate) and on the whole plant N demand. Recent studies in the Medicago truncatula model legume revealed how root-produced CEP peptides control the root competence for endosymbiosis with N fixing rhizobia soil bacteria through the activity of the Compact Root Architecture 2 (CRA2) CEP receptor in shoots. Among CEP genes, MtCEP7 was shown to be tightly linked to nodulation, and the dynamic temporal regulation of its expression reflects the plant ability to maintain a different symbiotic root competence window depending on the symbiotic efficiency of the rhizobium strain, as well as to reinitiate a new window of root competence for nodulation.


Assuntos
Medicago truncatula , Rhizobium , Nódulos Radiculares de Plantas/microbiologia , Nodulação/genética , Simbiose/fisiologia , Raízes de Plantas/metabolismo , Sinais Direcionadores de Proteínas , Rhizobium/fisiologia , Medicago truncatula/microbiologia , Peptídeos/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Plant Physiol Biochem ; 206: 108260, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096733

RESUMO

The B3 family genes constitute a pivotal group of transcription factors that assume diverse roles in the growth, development, and response to both biotic and abiotic stresses in plants. Medicago truncatula is a diploid plant with a relatively small genome, adopted as a model species for legumes genetics and functional genomic research. In this study, 173 B3 genes were identified in the M. truncatula genome, and classified into seven subgroups by phylogenetic analysis. Collinearity analysis revealed that 18 MtB3 gene pairs arose from segmented replication events. Analysis of expression patterns disclosed that 61 MtB3s exhibited a spectrum of expression profiles across various tissues and in the response to salt stress, indicating their potential involvement in salt stress signaling response. Among these genes, MtB3-53 exhibited tissue-specific differential expression and demonstrated a rapid response to salt stress induction. Overexpression of MtB3-53 gene in Arabidopsis improves salt stress tolerance by increasing plant biomass and chlorophyll content, while reducing leaf cell membrane damage. Moreover, salt treatment resulted in more up-regulation of AtABF1, AtABI3, AtHKT1, AtKIN1, AtNHX1, and AtRD29A in MtB3-53 transgenic Arabidopsis plants compared to the wild type, providing evidences that MtB3-53 enhances plant salt tolerance not only by modulating ion homeostasis but also by stimulating the production of antioxidants, which leads to the alleviation of cellular damage caused by salt stress. In conclusion, this study provides a fundamental basis for future investigations into the B3 gene family and its capacity to regulate plant responses to environmental stressors.


Assuntos
Arabidopsis , Medicago truncatula , Medicago truncatula/metabolismo , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...